H-E-B Grocery Total Power Solution™ for Fuel Cell Powered Material Handling Equipment

PowerEdge™ Fuel Cell Hybrid Power Packs PowerTap™ Hydrogen Refueling

> Gus Block Nuvera Fuel Cells, Inc. 5/13/2011

Project ID # H2RA008

Overview

Timeline

- Project Start 08/01/09
- Project End 07/31/11
- Percent Complete: 79%
 (based on calendar time through March '11)

Barriers and Risks

- Operation of hydrogen and fuel cell equipment in very demanding application
- Confirming value proposition for fuel cells for material handling equipment
- Safety planning and safe operation

Budget

Total Project Funding:

-Overall: \$3,324K

-DOE: \$1,139K

-Cost share: \$2,185K

Partners

- H-E-B Grocery Host Site
- H-E-B Parkway Systems
- Airgas
- Nuvera Fuel Cells Project Lead

ARRA Relevance

Objective

Validate DOE market transformation activities by demonstrating:

- Fuel cell-powered forklifts operating in highly transient environments.
- A distributed natural gas-based hydrogen refilling system as a precursor to future automotive fuel cell refilling stations.

ARRA 2009 Relevance

- <u>Stimulate</u> use of emerging technologies additional investment by H-E-B is anticipated, without ARRA funding.
- Develop <u>jobs and job skills</u> (manufacturing, product development, repair and maintenance) in clean energy growth industries.

FCT ARRA Relevance

 Project has led to improvements to make fuel cells and hydrogen refueling equipment commercially viable.

Barriers and Risks Addressed

- Use of equipment in demanding customer application and environment has uncovered substantial opportunities to improve fuel cell and hydrogen technology reliability.
- Operation and maintenance costs are being quantified.
- Proper safety planning and safe operation of all equipment.

Approach

Demanding Application

- Class-II forklifts are generally the most demanding material handling application.
- H-E-B incentivizes forklift operators to maximize the amount of product moved.
- H-E-B has optimized warehouse utilization with higher lifts & heavier pallets.
- H-E-B facility poses challenges with air quality, shock & vibration, and high ambient temperatures.

These factors resulted in challenges that emerged during the course of the project and were addressed in the previous 12 months.

Tasks and Status - Approach

ID	Task	Status
1	Build fuel cell systems and hydrogen generation and refueling station.	Complete (Q409)
2	Create site-specific service plan, including training of local service providers: Parkway Systems (fuel cell systems) Airgas (hydrogen infrastructure)	Complete (Q409)
3	 Deploy fleet 60 forklift operators received hydrogen and fuel cell training Multiple issues resulted in scale-back of fleet July – November 2010 during reliability campaign 	Complete (Q410)
4	 Confirm value proposition Initial productivity assessment completed Q110 Follow-up underway with process excellence group Go/No Go for fleet expansion will depend on trials with 2011 PowerEdge model RL40 (early summer 2011) 	50% Complete (Q111)
5	Final Testing	0% Complete
6	Project management	79% Complete (Q111)

Site Plan - Approach

PowerTap Location

RL25 Issues

- Fleet was reduced from 14 to 4 units in July 2011
 - Root cause analysis undertaken
 - Corrective actions identified
 - Reliability campaign initiated
- Issues Resolved
 - ✓ Dirt
 - ✓ Shock & vibration
 - ✓ High temperatures
 - ✓ Short Absorbed Glass Mat battery life
- Performance verified during busy season
 - MTBF is 3-4X higher
- > Test & validate future product enhancements
 - More robust power circuits
 - Auto-Start feature to extend battery life
 - Improved controls to extend stack life

^{*} Feb'11 data through 2/9/11

Mean Time Between Failure (MTBF) is 3-4 times higher in Dec'10 – Feb'11 vs. Aug – Oct'10

PowerTap Issues

- High ambient temperatures reduced hydrogen generator capacity, de-rated from 56 to 45 kg/day.
 - New cooling strategy will be implemented in Summer 2011.
- Power outages cause some electrical components to fail
 - Protections/replacements implemented on case-by-case-basis.
- Local natural gas composition and water quality require more frequent replacement of desulphurizing media and RO membranes.
- Water pump speed control not robust, so target steam pressure was not consistently achieved (Sep'10), requiring manual intervention every several days.
 - New control strategy being developed.

PowerTap Reliability

PowerTap has supplied >90% of all hydrogen consumed at H-E-B since Sep'10, and is at or near 100% currently.

Safety

- Safety Plan prepared in compliance with the DOE Safety Planning Guidance for Hydrogen Projects.
- Reviewed by and discussed DOE Hydrogen Safety Panel in December 2010 during on-site visit.
 - Focus was primarily on safety devices and design, especially on dispenser and dispenser area.
 - All recommendations will be reviewed and implemented as needed.
- Safety plan will be revised to respond to Panel comments.
 - More thorough description of the level of coordination between
 H-E-B and Nuvera on communication and management of near-misses, incidents and changes, was requested.

8 PowerEdge safety Near Misses or Non-Events identified to date.

Near Miss: An event that under slightly different circumstances could have become an Incident.

Example: Unplanned hydrogen release insufficient to sustain a flame.

Non-Event: A situation, occurrence, or other outcome relevant to safety that does not involve an

Incident (Severity 1) or a Near-Miss (Severity 2).

<u>Examples</u>: Failed safety inspection, or an unsafe material condition beyond normal wear and tear, that if left uncorrected, could eventually compromise personal safety.

 2 non-hydrogen fire Near Misses involving electrical interconnection and power management.

Primary Factor: Design Flaw

- 3 water discharge Non-Events involving PowerEdge controls Primary Factor: Design Flaw
- 3 minor hydrogen releases (no ignition) Non-Events involving hydrogen tanks

Primary Factor: Maintenance Required

4 PowerTap safety Incidents, Near Misses, or Non-Events identified to date.

Incident: An event that results in:

- A lost time accident and/or injury to personnel
- Damage/unplanned downtime for project equipment, facilities, or property
- Impact to the public or environment
- Any hydrogen release that unintentionally ignites or is sufficient to sustain a flame if ignited
- Release of any volatile, hydrogen containing compound (other than HCs used as common fuels)
- 1 20-gallon hydraulic oil leak Incident involving cyclic fatigue failure of un-supported cantilevered pressure gauge Primary Factor: Design Flaw
- 2 reformate release Near Misses from PTG-50 involving 1) damaged O-ring and 2) HX structural support Primary Factor: Design Flaws
- 1 Non-Event involving movement of hydrogen tubing on roof during sustained high winds (80 mph)
 Primary Factor: Weather

Corrective Actions for Safety Issues

<u>PowerEdge</u>

- Regen modules were upgraded to prevent the electrical shorting.
- Water management hardware and controls software were upgraded to eliminate the excess water discharges on the warehouse floor.

PowerTap

- PTC compressor was upgraded to ensure all components and gauges were adequately supported against vibration.
- Structural support for the HX in the PTG was upgraded to withstand thermal cycling.
- Service procedure for replacing the filter was updated to help reduce the risk of damaging O-rings.
- Supports for the high pressure tubing running along the warehouse roof to the dispensers were upgraded to withstand wind speeds up to 120 mph.

Value Proposition

- Cost of Ownership
 - Assessed on \$/hour basis
 - Air & Water Filters
 - Battery repair & replacements
 - Stack and cell repair & replacements
 - Desulphurizing media
- Attempting to gather data regarding reduced truck maintenance
- > Productivity
 - 10% total productivity gain vs. batteries measured in Q110
 - Will repeat in Q111

3 Month Average January - March 2010

Service Plan - Collaboration

Nuvera Customer Care provides safety & service training, spare parts, data analysis, warranty, and factory service support.

- H-E-B Parkway Systems is Local Service Provider for PowerEdge fuel cell systems.
 - 1st Responder Role: Minimize customer downtime.
 - Tier-1 Service training
 - Operator training
 - Schedule maintenance
 - · Basic diagnostics and repairs
 - Tier-2 Service qualification
 - Advanced qualification for safety critical repairs (high pressure/voltage).
- Nuvera is Local Service Provider for the PowerTap hydrogen refueling system.
 - Airgas Southwest personnel trained as LSPs but do not have sufficient resources to provide 24*7 service coverage.
 - Airgas SW will take over LSP role after fleet expansion (2 add'l PowerTaps).
- Airgas (Bozrah, CT)
 - Provides 24*7 monitoring of PowerTap status.

Future Work

- Continue to operate 14-unit fleet in normal operations to gain durability and life cycle cost information on the fuel cell systems.
- Monitor and record the long term operation cost of on-site hydrogen generation.
- Compile performance data of PowerEdge and PowerTap systems.
- Assess productivity gains.
- Undertake steps necessary for fleet expansion (28 PowerEdge systems and 2 PowerTap systems)
 - Field testing of higher-power RL40 PowerEdge units

Future Work – Fleet Expansion

- Phase 1: One PowerTap hydrogen refueler, and 14 PowerEdge units in produce and grocery distribution centers.
- Phase 2: One additional PowerTap systems and 16 more PowerEdge units, completing the conversion of produce and grocery DCs.
- Phase 3: One additional PowerTap system and 12 PowerEdge freezer units.

Phases 2 and 3 are beyond the project scope but are made possible because of the accomplishments of ARRA-funded Phase 1.

Future Work – Fleet Expansion

Go/No Go on Phase 2 depends on successful testing of higher-power PowerEdge RL40.

To ensure high performance and reliability, Nuvera is upgrading key sub-systems and utilizing a disciplined testing and qualification process.

Summary

- H-E-B's demanding operation has helped Nuvera understand how to develop a more robust product.
- Nuvera has incorporated all of these learnings into the design & controls of the products for Phase 2 for H-E-B as well as for future customers.
- H-E-B is realizing a significant productivity gain.
- Job creation:
 - 1 job associated with PowerTap maintenance
 - 2 jobs associated with PowerEdge maintenance
- Hydrogen infrastructure
 - On-site generation a unique feature of the project
 - Directly relevant to the establishment of automotive hydrogen infrastructure

Technical Back-Up Slides

PowerEdge Fuel Cell System

Product Specifications

-	RL25
Rated Power (30 sec)	25 kW
Voltage	36 VDC
Operating Current Range¹	-400A to 1150A
Energy Storage Capacity ²	35.7 kWh
Size - in. (mm)	38.2 in. x 20.1 in. x 30.8 in. (970 mm x 510 mm x 781 mm)
Target Weight - lbs (kg)	2600 lbs (1155 kg)
Refueling Time	120 sec
Hydrogen Storage	1.0 kg
Hydrogen Pressure	5075 psig (350 bar)
Hydrogen Port	SAE J-2600 H35, CE 0036
Ambient Operating Temperature ³	25 to 95°F (-4 to 35°C)
Environment	Indoor Use Only
Emissions	Water Vapor

Notes 1: Actual lower limit is dependent on truck upper voltage threshold (value shown based on 44V)

2: Based on LHV of H2 at 5075 psi (350 bar),15°C and 1 hr battery discharge rate

3: System must be stored and started above freezing conditions (4°C, 39°F minimum)

PowerTap Hydrogen Infrastructure

PowerTap Hydrogen Station

PowerTap Hydrogen Generator	Specifications
Rated Hydrogen Production	50 kg/day
Hydrogen Purity	99.995%
Natural Gas Consumption	7.5 MBTU/day 222 Nm³/day
Water Consumption	2400 l/day
Electrical Consumption	9 kW average
Size	12 ft x 4 ft x 9 ft 3.66 m x 1.22 m x 2.74 m
Operating Temperature	-4°F to 104°F (-20°C to 40°C)
Standards Compliance	Designed for CSA, CE
Environment	Outdoor
Emissions ¹	NOx: <15 ppm CO: <50 ppm SOx: undetectable

. on all tap in yar ogen otation	
Gaseous Hydrogen Source	Steam reformer, electrolyzer or delivered via tube trailer or liquid hydrogen
Dispensing Rate	500 – 1000 gram/minute
Dispensing Pressure	5000 psig (350 bar)
Storage Capacity	Configurable from 12 – 128 kg
Compressor	Hydraulically driven intensifier
Electrical Consumption	12 kW average
Operating Temperature	-4°F to 104°F (-20°C to 40°C)
Standards Compliance	System Designed to: CSA HGV4 & NFPA 52 Dispenser Nozzle: SAE J2600-H35 Type A Compliant
Environment	Compression and Storage: Outdoor Dispenser: Indoor or Outdoor

Specifications

